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Abstract

A numerical study is presented of unsteady double!di}usive convection in a square cavity with equal but opposing
horizontal temperature and concentration gradients[ The boundary conditions along the vertical side!walls are imposed
in such a way that the buoyancy ratio N � GrS:GrT is equal to −0\ where GrS and GrT are the solutal and thermal
Grashof numbers\ respectively[ In this situation\ steady!state convective ~ow is stable up to a threshold value Grc0 of
the thermal Grashof number which depends on the Lewis number Le[ Beyond Grc0\ oscillatory convective ~ows occur[
Here we study the transition\ steady!state ~owÐoscillatory ~ow\ as a function of the Lewis number[ The Lewis number
varies between 1 and 34[ Depending on the values of the Lewis number\ the oscillatory ~ow occurring for GrT slightly
larger than Grc0 is either centro!symmetric " for Le − 06# or asymmetric single frequency ~ow " for Le ¾ 06#[ For larger
values of the thermal Grashof number\ the two regimes occur for _xed values of GrT and Le[ Furthermore\ computations
show that Grc0 reaches a minimum equal to 3[64×093 for Le ¼ 6[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

C dimensionless concentration
D solutal di}usivity
Grc0 critical value of the thermal Grashof number cor!
responding to the onset of the oscillatory motion
GrS solutal Grashof number
GrT thermal Grashof number
` gravitational acceleration
Le Lewis number
N buoyancy ratio
Nu Nusselt number
P dimensionless pressure
P dimensionless period of oscillation
Pr Prandtl number
RaT thermal Rayleigh number
Rac critical value of the thermal Rayleigh number cor!
responding to the onset of convection
Sc Schmidt number
Sh Sherwood number
t dimensionless time
T dimensionless temperature

� Corresponding author

U dimensionless velocity vector
u horizontal component of the velocity
x\ z dimensionless horizontal and vertical coordinates[

Greek symbols
bC coe.cient of solutal expansion
bT coe.cient of thermal expansion
x thermal di}usivity
dC solutal boundary layer
dT thermal boundary layer
n kinematic viscosity
r density
C stream!function[

0[ Introduction

The behavior of a ~uid subjected to the gradient of two
properties with di}erent di}usivities is called {double!
di}usive convection| ð0Ł[ Although {double!di}usive con!
vection| covers a wide range of phenomena such as ocean!
ography\ geology and crystal growth "Schmidt ð1Ł\ Wil!
cox ð2Ł\ Turner ð3Ł and Huppert and Turner ð4Ł#\ we shall
restrict ourselves to the investigation of the structure of
the steady and unsteady ~ows in a square cavity with



K[ Ghorayeb et al[:Int[ J[ Heat Mass Transfer 31 "0888# 518Ð532529

horizontal heat and mass gradients due to constant tem!
peratures and concentrations along the vertical side!
walls\ respectively[

Double!di}usive convection in cavities with horizontal
thermal and solutal gradients was the subject of several
works in the two last decades since it is related closely to
some physical processes such as the horizontal Bridgman
crystal growth technique "Kamotani et al[ ð5Ł#[ During
the growth of a crystal\ the profound in~uence of the
transport processes in the ~uid phase on the structure
and the quality of the solid phase requires a good under!
standing of the buoyancy convective ~ows in this prob!
lem[

Aside from the aspect ratio of the cavity\ double di}us!
ive convection involves four dimensionless parameters]
the Prandtl number Pr\ the Schmidt number Sc\ and
the solutal and thermal Grashof numbers GrS and GrT\
respectively "all of the parameters will be de_ned in sec!
tion 1#[ However\ the qualitative behavior of the double!
di}usive induced ~ow depends mainly on the buoyancy
ratio N � GrS:GrT �"bCDC#:"bTDT# and the Lewis num!
ber Le � Sc:Pr � x:D where D\ x\ bC\ bT\ DC\ and DT
are the solutal and thermal di}usivities\ the coe.cients
of solutal and thermal expansion\ and the di}erences
of concentrations and temperatures between the vertical
side!walls\ respectively[ The question of the e}ect of the
Lewis number and the buoyancy ratio on the ~ow struc!
ture when the temperature and the concentration are
imposed along the vertical side!walls has been widely
discussed by Bergeon et al[ ð6Ł\ Ghorayeb ð10Ł\ and
Bennacer ð11Ł[

Two situations are generally considered depending on
the sign of the buoyancy ratio N[ The solutal and thermal
buoyancy contributions can cooperate "N × 9# or be
opposite to each other "N ³ 9#[ In both cases\ mono!cell
and multi!cell ~ows have been experimentally observed
and numerically computed\ depending on the range of
parameters considered[ It should be mentioned that\ a
better agreement between experimental and numerical
results has been observed when the solutal and thermal
buoyancy forces cooperate than the case when they
oppose to each other[ This may perhaps be due to the
unsteady convective motions which are generally
observed in the {opposing case| "Jiang et al[ ð7Ł\ Weaver
and Viskanta ð8Ł\ Ghorayeb ð10Ł and Bergeon et al[ ð6Ł#[

This paper is concerned with the numerical investi!
gation of the onset of double!di}usive oscillatory ~ows
in a square cavity when the ratio N of solutal to thermal
Grashof numbers is equal to −0[ This situation has been
previously studied by Krishnan ð15Ł\ Gobin and Bennacer
ð09Ł\ Xin et al[ ð01\ 13Ł\ Ghorayeb ð10Ł\ Ghorayeb and
Mojtabi ð02Ł\ Bergeon et al[ ð6Ł\ Nishimura et al[ ð03^ 16Ð
17Ł\ and Zou and Zebib ð04Ł[ The choice N � −0 would
be di.cult to attain experimentally[ However\ we believe
that the study of this particular situation provides a step!
ping stone to a better understanding of much more

realistic situations in which N di}ers from −0[ In such a
situation\ convective motions are induced by the di}er!
ence between the thermal and the solutal di}usivities\ x
and D\ respectively[

When N is equal to −0\ the purely di}usive solution
is stable up to a critical value Rac of the thermal Rayleigh
number RaT "RaT � Pr GrT#[ Linear analysis has been
performed in order to evaluate this critical Rayleigh num!
ber Rac[ Gobin and Bennacer ð09Ł established that in
an in_nite vertical layer\ the stability of the motionless
solution only depends on RaT"Le−0#[ They showed\ fol!
lowing the analysis carried out by Thorpe et al[ ð00Ł\
that Rac � 5011:"Le−0#[ The analytical solution they
obtained only satis_es the impermeability condition at
the vertical side!walls[ Ghorayeb and Mojtabi ð02Ł and
Xin et al[ ð01\ 13Ł re_ned this analysis and established
that RaT � 5498:"Le−0#\ corresponding to the critical
dimensionless wave number kc � 1[42[ More precisely\
Ghorayeb and Mojtabi ð02Ł considered vertical two!
dimensional bounded boxes of various _nite extension[
Their results show the evolution of the critical Rayleigh
number with the aspect ratio[ Using direct numerical
simulations of convective solutions\ they observed the
existence of a wide variety of steady one!cell and multi!
cell solutions for a _xed aspect ratio and Rayleigh
number[ Recently\ Bergeon et al[ ð6Ł considered\ using a
continuation method\ the mechanisms by which stable
solutions lose stability or by which unstable solutions
regain stability[ They also studied the in~uence of the
cavity inclination on the stability and bifurcating solu!
tions[ They found that the bifurcation at Rac is either
transcritical or pitchfork depending on the aspect ratio
and the inclination of the cavity[

For the vertical square cavity\ Rac"Le−0# is equal to
06 061 and the bifurcation at Rac is transcritical ð6\ 01Ð
02\ 13Ł[ Two branches of steady solutions emerge at
RaT � Rac "Fig[ 0#] the supercritical and the sub!critical
ones[ Both solutions are centro!symmetric[ When we
increase the thermal Grashof number beyond some value
"GrT � 2924 for Le � 00\ for example#\ only one branch
of solution remains stable "the sub!critical solution#[ The
supercritical branch undergoes a pitchfork bifurcation
and\ consequently\ loses stability[ The other branch of
solution "the sub!critical branch\ designated by squares
on Fig[ 0# remains stable up to a critical value of the
thermal Grashof number Grc0[ At Grc0\ it undergoes a
Hopf bifurcation[ Thus\ the steady state ~ow loses stab!
ility and an oscillatory convective ~ow appears[ The value
of Grc0 depends on the Lewis number[ Krishnan ð15Ł
studied this transition for Pr � 0 and Le � 2[050 in a
square cavity[ He established that the transition convec!
tive steady ~owÐoscillatory ~ow occurs for GrT � Grc0 �
5[14×093[ The oscillatory solution\ which appears at
Grc0\ breaks the centro!symmetry and is a single frequency
oscillatory ~ow[

Our work follows Krishnan|s work ð15Ł[ We study
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Fig[ 0[ Behavior of the extremum value of the dimensionless stream function as a function of the Rayleigh number for a square cavity\
for both the supercritical regime "circles# and the sub!critical regime "squares#[ The zoom shows the supercritical regime in more detail[
The dashed branch designates predictive mapping of the unstable solution branch ð02Ł[

the in~uence of the Lewis number on the steady ~owÐ
oscillatory ~ow transition[ We _nd that the nature of the
oscillatory ~ow occurring for GrT × Grc0 depends on the
Lewis number[ The oscillatory regime can be centro!
symmetric or not\ depending on the values of the Lewis
number and the Grashof number[ In this paper we con!
sider the range "1Ð34# of the Lewis number[ The Prandtl
number is set equal to 0 in a square cavity[ All the numeri!
cal simulations are performed for a square cavity[ Very
recently\ Nishimura et al[ ð16Ł studied the e}ect of the
buoyancy ratio on the transition steady stateÐoscillatory
state in a cavity of aspect ratio A � 1 for Pr � 0\ Le � 1
and GrT � 094[ This study shows that oscillatory ~ows
occur not only for N � −0\ but also for N $ ð−0[011Ð
9[8Ł[ The authors also reported hysteresis of steady and
oscillatory states in the range N $ ð−0[011Ð0[933Ł[ In two
previous papers ð16Ð17Ł\ the authors studied the same
problem for the same range of parameters except for the
aspect ratios^ they considered cavities with aspect ratios
A � 0 ð16Ł and A � 9[4 ð17Ł[They reported that no oscil!
latory ~ows occur for those aspect ratios under the above
~ow conditions[ This is in agreement with our result^ for
A � 0\ Le � 1\ our numerical simulations show that the
transition steady stateÐoscillatory state occurs at
Grc0 � 0[14×094[ Zhou and Zebib ð04Ł have studied the
onset of double!di}usive oscillatory ~ows in a similar
situation "crystal growth by physical vapor transport pro!
cess where the horizontal velocity along the vertical side!
walls is proportional to the solutal ~ux#[ This study shows
that the critical Grashof number depends on both the
Lewis number and the aspect ratio of the cavity ð04Ł[

Our study is restricted to a range of the Grashof num!
ber where the oscillatory regime is found to be single

frequency[ However\ as it was found by Krishnan ð15Ł\
when we increase the Grashof number\ the oscillatory
regime undergoes two further bifurcations leading to
states with incommensurate second and third frequencies[
A typical power spectrum before broad band noise begins
to grow contains three linearly distinct frequencies and
several linear combinations of these frequencies[ This
behavior is the same as that reported by Gollub and
Benson ð05Ł for the RayleighÐBe�nard con_guration[ This
important feature of the ~uid behavior is not studied
here[ Our interest is only focused on understanding the
onset of the oscillatory ~ow as a function of the Lewis
number[

The paper is organised as follows] the next section
outlines the mathematical formulation of the problem
and the numerical method used to investigate it[ The
results are presented in the following section[ We _rst
study the structure of the steady state solution occurring
before the transition steady stateÐoscillatory state[ Then\
the in~uence of the Lewis number on both the values of
the Grashof number corresponding to this transition\ and
the structure of the oscillatory ~ow are studied[

1[ Mathematical formulation and numerical method

1[0[ Mathematical formulation

The system of equation is assumed to be unsteady state
with no heat generation\ viscous dissipation\ chemical
reactions or thermal radiation[ The OberbeckÐBous!
sinesq approximation is assumed to be valid^ thermo!
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physical properties are constant except in the buoyancy
term where]

r"T\ C# � r9"0−bT"T−T9#−bC"C−C9##[

Here] r9 � r"T9\ C9#\ bT �"−0:r9#"1r:1T#C and
bC �"−0:r9#"1r:1C#T are the density at temperature T9

and concentration C9\ the thermal expansion coe.cient\
and the solutal expansion coe.cient\ respectively[ The
conservation equations for momentum\ mass\ energy and
species in dimensionless form are the following]

1U

1t
¦"U =9#U � −9P¦91U−"GrTT¦GrSC#k\ "0#

9 = U� 9\ "1#

1T
1t

¦U =9T �
0
Pr

91T\ "2#

1C
1t

¦U =9C �
0
Sc

91C\ "3#

where

GrT �
`bTDTL2

n1
is the thermal Grashof number\

GrS �
`bCdCL2

n1
is the solutal Grashof number\

Pr �
n

x
is the Prandtl number and\

Sc �
n

D
is the Schmidt number[

D\ x\ n and `\ are the solutal di}usivity\ the thermal
di}usivity\ the kinematic viscosity\ and the gravity accel!
eration\ respectively[ The corresponding boundary con!
ditions "Fig[ 1# are]

Fig[ 1[ De_nition|s scheme[

U � 9 "x � 9\ x � 0\ [z and z � 9\ z � 0\ [x#\ "4#

T � C � 0 "x � 9\ [z#\ "5#

T � C � 9 "x � 0\ [z#\ "6#

1T
1z

�
1C
1z

� 9 "z � 9\ z � 0\ [x#[ "7#

In the above equations\ lengths are nondimensionalized
by L\ velocity by n:L\ time by L1:n\ temperature by
DT � T1−T0 and concentration by DC � C1−C0[ T0\ C0\
T1\ and C1 are the temperature and the concentration at
x � 9 and x � L\ respectively[ We assume that bT × 9
and bC ³ 9 "r increases with C and decreases with T#
and that T0 × T1 and C0 × C1[ These assumptions lead
to] GrT ×9 and GrS ³9[ The buoyancy ratio N � GrS:
GrT � −0 and the aspect ratio A is set equal to 0[

Equations "0#Ð"3# together with the boundary con!
ditions "4#Ð"7# are symmetric with respect to the follow!
ing centro!symmetry operator]

2
U"x\ z#

T"x\ z#

C"x\ z#3: 2
−U"0−x\ 0−z#

−T"0−x\ 0−z#

−C"0−x\ 0−z#3 [ "8#

As reported by Ghorayeb and Mojtabi ð02Ł\ and Bergeon
et al[ ð6Ł\ all of the stable solutions observed numerically
in the square cavity are symmetric with respect to the
above operator[

1[1[ Numerical scheme

The numerical method used here is based on the pro!
jection di}usion algorithm developed by Batoul et al[ ð06Ł
for solving two!dimensional unsteady incompressible
NavierÐStokes equations[ The temporal integration con!
sists of a semi!implicit second!order _nite di}erences
approximation[ The linear "viscous# terms are treated
implicitly by the second!order Euler backward scheme\
while a second!order explicit AdamsÐBashforth scheme
is used to approximate the non!linear "advective# parts[
A high!accuracy spectral method\ namely the Chebyshev
collocation method\ with the GaussÐLobatto zeros as
collocation points\ is used for the spatial discretization
ð12Ł[ The code has been used by Labrosse et al[ ð19Ł to
study the transition to unsteadiness of natural convection
~ow in a di}erentially heated cavity[ The results obtained
by those authors agree extremely well with previous stud!
ies[ Furthermore\ the results we present in this work are
in good agreement with those obtained by Krishnan ð15Ł
using a _nite element numerical code[

2[ Results and discussion

The study aims to compute the critical Grashof number
Grc0 beyond which the steady state convective ~ow loses
stability in a square cavity[ The nature of the oscillatory
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~ows occurring for GrT × Grc0 is also studied[ The ~ow
structure and the heat and mass transfers depend on the
Lewis number[ Our study is performed for values of the
Lewis number between 1 and 34[ However\ our numerical
simulations show that for Le × 06\ Grc0 and the oscil!
lation frequency vary linearly with Le[

The study is performed using 20×20 and 30×30
meshes for Le ¾ 10 and Le × 10\ respectively[ Table 0
shows the mesh in~uence on the Nusselt number Nu\ the
Sherwood number Sh\ and the stream function in the
middle of the cavity for Le � 10 and GrT � 5[4×093

"slightly lower than Grc0#[ This table shows that the results
obtained for the 20×20 mesh di}ers by less than 9[4)
from those obtained for the 30×30 mesh[ With regard
to the time step\ it varies between 09−3Ð4×09−4 depend!
ing on the values of Le and GrT[ Our numerical simu!
lations show that\ in the whole range of parameters we
studied\ further re_nement of grid size and time step
results in less than 9[4) of uncertainty both in terms of
heat and mass transfers\ and the oscillation frequency[

In order to compute the critical Grashof number which
corresponds to the steady ~owÐoscillatory ~ow tran!
sition\ we progressively increase GrT with a given step
dGrT until the steady state loses stability[ We compute
the solution for GrT¦dGrT starting with initial conditions
corresponding to GrT[ Once the oscillatory ~ow is
obtained\ we progressively decrease GrT with small step
dGrT starting this time with the oscillatory regime as
initial condition for the numerical simulations[ It should
be noted that\ the lower =GrT−Grc0=\ the higher the tran!
sition time is[ The closer one gets to the critical Grashof
number\ the slower the oscillations decay or grow[ For
instance\ the critical Grashof number is obtained with
less than 1) accuracy[

2[0[ Steady state ~ow structure "GrT ³ Grc0#

The experimental and numerical studies using large
Lewis number binary ~uids show a very thin solutal
boundary layer[ Suppose that the vertical side!walls of
the cavity are maintained at temperatures "con!
centrations# T0 and T1 "C0 and C1# respectively[ The ther!
mal "solutal# boundary layer dT "dC# near the wall x � 9\

Table 0
Resolution e}ect] Le � 10\ GrT � 5[4×093 "slightly lower than
Grc0#

M Nu Sh C "center#

10 2[48269 8[883 −8[2155
20 2[53660 09[79 −8[3633
30 2[53305 09[67 −8[3532
40 2[53332 09[66 −8[3536

for instance\ is de_ned as the distance across which the
temperature "concentration# varies from T0 "C0# to
"T0¦T1#:1 ""C0¦C1#:1#[ dT "dC# depends evidently on z[
Our numerical simulations show that the thermal and
solutal boundary layer thicknesses are minimum for
z � 9[1 " for the square cavity#[ We designate\
subsequently\ the boundary layer thickness that cor!
responding to z ¼ 9[1[ When the Lewis number is larger
than 0\ the ratio dT:dC is thus larger than 0[ This ratio
becomes more important when Le increases[ The con!
centration outside the vertical solutal boundary layer is
almost constant[ The small solutal gradient outside the
thin solutal boundary layer leads to thermally driven
buoyancy forces in the core of the cavity[ Wang et al[
ð14Ł suggested that the ratio of the thermal to the solutal
boundary layer thicknesses is of the order of]

dT

dc

�"=N=Le#0:3[ "09#

This result is e}ectively observed in several numerical
and experimental studies "Kamotani et al[ ð5Ł^ Lee and
Hyun ð07Ł^ Hyun and Lee ð08Ł#[ It con_rms the result
obtained by the thermo!solutal boundary layer analysis
for a ~uid in which the thermal buoyancy force dominates
the solutal one ð11Ł "i[e[\ the density variations in the
~uid are mainly caused by thermal buoyancy forces#[
However\ the thermo!solutal boundary layer analysis
shows that\ in the opposite case\ where the solutal buoy!
ancy force dominates the thermal buoyancy force\ one
obtains ð11Ł

dT

dC

� Le0:2[ "00#

These results are obtained for large Lewis number[
For N � −0\ the case we study\ we investigated the

in~uence of the Lewis number on the thermal and solutal
boundary layers[ It should _rstly be mentioned that the
mesh we use "GaussÐLabatto collocation points# is par!
ticularly suitable for the study where thin boundary layers
occur[ Figure 2 shows both the iso!concentration lines
and the mesh for "Le � 10\GrT � 58 999# "Grc0 � 69 999#
where four collocation points are in the solutal boundary
layer[ Figures 3 and 4 show the solutal and thermal
boundary layers as a function of the Lewis number[ The
corresponding Grashof numbers are slightly lower than
the critical Grashof numbers[ Figure 4 shows that\ the
thermal boundary layer is not signi_cantly in~uenced
when the Lewis number varies "the Prandtl number is set
equal to −0#[ We _nd\ in the range of parameters we
study\ that]

dT

dC

� Le9[2546[ "01#

Figure 5 shows dT:dC numerically obtained and the ana!
lytical approximation obtained by eqns "09# and "00#[ On
a logÐlog graph\ dT:dC increases linearly with Le[ The
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Fig[ 2[ Solutal boundary layer for Le � 10\ GrT � 58 999\ 20×20
mesh[ Four collocation points are in the boundary layer[

slope of this linear curve is 9[2546[ This result di}ers by
less than 09) from the results obtained by equation "00#[

2[1[ Oscillatory re`imes

Figure 6 summarizes the principal results concerning
Grc0 and the structure ~ow for GrT ×Grc0[ Grc0 depends
on the value of the Lewis number[ The curve X1OX3

designates the critical Grashof number as a function of
the Lewis number[ For the values of "Le\ GrT# below
this curve we obtain a steady state convective ~ow[ Grc0

reaches a minimal value equal to 3[14×093 for Le ¼ 6[
The point O "Le � 06\GrT � 5[3×093# divides this curve
into two parts[ For Le × 06\ Grc0 varies almost linearly
as function of Le[ The "+# on the curve OX1 designates
the value reported by Krishnan ð15Ł for the transition
steady ~owÐoscillatory ~ow[ This value agrees very well
with our results[ It should be noted that the steady state
convective ~ow "GrT ³ Grc0# is shown to be centro!sym!
metric for all values of Le considered in this study[
However\ the oscillatory ~ow is either centro!symmetric
or not depending on the values of "Le\ GrT#[ With regard
to the nature of the oscillatory ~ow obtained for the
values of "Le\ GrT# above the curve X1OX3\ three zones
of the oscillatory ~ow structure can be distinguished "Fig[
6#[

2[1[0[ Sb] centro!symmetry breakin` re`ime
This region is bounded by the curves OX0 and OX1[

The ~ow in this region breaks the centro!symmetry[ The
~ow structure on a half of a period is symmetric to that
corresponding to the other half of the period with respect
to the middle of the cavity[ Let P be the oscillation period

for some couple "Le\ GrT# in this zone[ the ~ow at the
time t of this period is symmetric\ with respect to the
middle of the cavity\ to that corresponding to the time
t¦P:1[ We designate by {temporal symmetry| the last
~ow behavior[ It should be mentioned that Krishnan
ð15Ł has only observed the centro!symmetry breaking
solution[ Figure 7 shows the ~ow structure during a per!
iod for Le � 00\ GrT � 3[64×093 "Grc0 � 3[56×093#[ The
temporal symmetry is clearly shown on this _gure[ The
~ow in this zone is a single!frequency one[

2[1[1[ Sc] centro!symmetric re`ime
The oscillatory ~ow obtained for the values of

"Le\ GrT# bounded by the curves OX2 and OX3 is centro!
symmetric[ However\ temporal symmetry does not occur[
Figure 8 shows the ~ow structure during a period for
Le � 10\ GrT � 6[9×093 "Grc0 � 5[8×093#[

2[1[2[ Sbc] multiple oscillatory ~ows
For the values of "Le\ GrT# which are above the curve

X0OX2 "Sbc zone#\ our numerical simulations show that
both centro!symmetry oscillatory ~ow and symmetry
breaking oscillatory ~ow occur for _xed values of
"Le\ GrT#[ There are multiple oscillatory ~ows[ This
depends on the initial conditions of the numerical simu!
lation[ The symmetry properties of a solution in this
region are the same of that corresponding to the initial
conditions of this numerical simulation[ Figures 09 and
00 show the ~ow structure during a period for both the
centro!symmetric oscillatory solution and the symmetry
breaking oscillatory solution obtained for "Le � 00\
GrT � 6[9×093# and "Le � 10\GrT � 8[9×093#\ respec!
tively[ Figure 01"a# shows how the oscillatory solution
loses the centro!symmetry property when the numerical
simulation is performed for "Le\ GrT# in the "Sb# zone
starting with initial conditions corresponding to a centro!
symmetric solution in the Sbc zone[ The opposite case is
shown in Fig[ 01"b# which shows how the oscillatory
solution becomes centro!symmetric when the numercial
simulation is performed for "Le\ GrT# in the "Sc# zone
starting with initial conditions corresponding to a centro!
symmetry breaking solution in the Sbc zone[ Figure 02"aÐ
f# shows the behavior of the Nusselt number as function
of time\ the power of the specter as function of the
frequency\ and the Sherwood number as function of the
Nusselt number for Le � 00\ GrT � 6[9×093 "left# and
Le � 10\ GrT � 8[9×093 "right#[ We can see that the
oscillation frequency for the centro!symmetric solution
is larger than the oscillation frequency for the centro!
symmetry breaking solution[ We can also see that the
amplitude of the oscillation is larger for the centro!sym!
metry breaking solution than that of the centro!sym!
metric solution[

2[1[3[ Remarks and discussion
In Figs 7 and 8\ small solutal blobs are pinched o}

"contour C � 9[4 in Fig[ 7 and contours C � 9[3 and
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Fig[ 3[ Solutal boundary layer for Le � 1\ 6\ 04\ 06\ 14\ and 24 corresponding to GrT � 0[1×094\ 3[0×093\ 4[8×093\ 5[3×093\ 6[0×093\
and 7[14×093\ respectively "values slightly lower than Grc0#[ The meshes used are 20×20 and 30×30 for Le ¾ 10 and Le × 10\
respectively[
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Fig[ 4[ Thermal boundary layer for Le � 1\ 6\ 05\ 06\ 14\ and 24 corresponding to GrT � 0[1×094\ 3[0×093\ 4[8×093\ 5[3×093\ 6[0×093\
and 7[14×093\ respectively "values slightly lower than Grc0#[ The meshes used are 20×20 and 30×30 for Le ¾ 10 and Le × 10\
respectively[
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Fig[ 5[ dT:dC is presented as function Le "top#[ +\ dashed\ and
dot!dashed lines designate our numerical results and the curves
dT:dC � Le0:2 and dT:dC � Le0:3 obtained by the thermo!solutal
boundary layer analysis\ respectively[ The _gure in bottom pre!
sents the same curves in a logÐlog graph[ The curve plotted in
the solid line designates dT:dC � Le9[2546[

Fig[ 6[ Various zones of oscillatory ~ows as function of "GrT\ Le#[
Below X1OX3] steady state centro!symmetric regime[ X1OX3 is
the threshold of this regime[ Sb] symmetry breaking oscillatory
regime[ Sc] centro!symmetric oscillatory regime[ Sbc "above
X0OX2#] coexistence of both oscillatory regimes for _xed
"GrT\ Le#[ + indicates the steady stateÐoscillatory state threshold
obtained by Krishnan ð15Ł for Le � 2[050[

Fig[ 7[ Flow structure during eight moments of a period[ Con!
tours of the stream!function\ concentration and temperature
_elds are shown[ Le � 00\ GrT � 3[64×093\ Resolution is
20×20\ time step is 09−3[
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Fig[ 8[ Flow structure during eight moments of a period[ Con!
tours of the stream!function\ concentration\ and temperature
_elds are shown[ Le � 10\ GrT � 6[9×093\ Resolution is 20×20\
time step is 09−3[

C � 9[5 in Fig[ 8#[ These blobs appear only over a small
part of the time cycle[ Over the remainder part of the
oscillation period\ they are dissipated away by the e}ect
of solutal di}usion[ Those _gures designate the ~ow for
Grashof numbers slightly greater than the critical
Grashof number[ The size of these blobs is shown to be
closely related to the Lewis number and the Grashof
number[ This size increases with Le[ With an increasing
Grashof number\ the solutal blobs become bigger and
present throughout the time cycle "Figs 09 and 00#[ The
number of blobs also increases with the Grashof number[
The presence of the solutal blobs has been reported by
Krishnan ð15Ł\ to be the cause of the oscillatory ~ow in
the ~uid[

3[ Conclusion

Numerical simulations of unsteady double!di}usive
convection in a square cavity\ with equal and opposing
buoyancy forces due to horizontal thermal and con!
centration gradients were carried out[ The presented
results exhibit the in~uence of the Lewis number on the
transition steady state convective ~owÐoscillatory ~ow\
and the oscillatory ~ow structure occurring beyond this
transition[ The range "1Ð34# of the Lewis number has
been studied[ The convective steady state ~ow is centro!
symmetric regardless of the value of Le[ However\ the
oscillatory ~ow which occurs after the transition steady
stateÐoscillatory state is either centro!symmetric or asym!
metric depending on the value of the Lewis number[
Furthermore\ it is found that\ depending on the values of
"Le\ GrT"× Grc0##\ results show three situations of the
oscillatory ~ow[ The _rst is where only the asymmetric
oscillatory ~ow occurs[ The second is where only the
centro!symmetric oscillatory ~ow occurs[ The third is
where both oscillatory ~ows occur for _xed values of
"Le\ GrT#[ In the range of "Le\ GrT# studied\ the oscillatory
~ow is shown to be single frequency[ Computations have
been repeated for _ner mesh and time step[ This should
con_rm the quantitative and qualitative validity of our
results[
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Fig[ 09[ Flow structure during eight moments of a period[ Contours of the stream!function\ concentration\ and temperature _elds are
shown\ the symmetry!breaking solution "left# and the centro!symmetric solution "right#[ Le � 00\ GrT � 6[9×093\ Resolution is 20×20\
time step is 09−3
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Fig[ 00[ Flow structure during eights moments of a period[ Contours of the stream!function\ concentration\ and temperature _elds are
shown\ the symmetry!breaking solution "left# and the centro!symmetric solution "right#[ Le � 10\ GrT � 8[9×093\ Resolution is 20×20\
time step is 4×09−4[
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Fig[ 01[ u"9[0218\ 9[4# as function of the time[ Resolution is 20×20\ time step is 09−3[ "a#] numerical simulation for
"Le � 00\ GrT � 49 999# "Sb zone#[ The initial condition corresponds to a centro!symmetric ~ow for "Le � 00\ GrT � 44 999 × Grc0#
"Sbc zone[ "b#] numerical simulation for "Le � 10\ GrT � 64 999# "Sc zone#[ The initial condition corresponds to a centro!symmetric
~ow for "Le � 10\ GrT � 74 999# "Sbc zone#[
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Fig[ 02[ Behavior of the Nusselt number as function of the time t "a and b# and of the power of the specter of the oscillations as a
function of the frequency "c and d#[ The dashed and solid lines designate the centro!symmetric ~ow and the centro!symmetry breaking
~ow\ respectively[ "e and f# designate Sh as function of Nu during a period[ � and e correspond to the eight moments of a period
plotted in Figs 09 and 00\ respectively[ Resolution is 20×20\ time step is 09−3 and 09−4 for Le � 00 and Le � 10\ respectively[
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